- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jingao (2)
-
Chen, Hanlin (1)
-
Chen, Lin (1)
-
Gerya, Taras (1)
-
Han, Guilin (1)
-
Han, Song (1)
-
Huang, Shichun (1)
-
Kuang, Xingtao (1)
-
Li, Weihan (1)
-
Lin, Xiubin (1)
-
Shi, Xuhua (1)
-
Sun, Yanyun (1)
-
Teng, Fang-Zhen (1)
-
Wang, Baodi (1)
-
Wang, Shui-Jiong (1)
-
Wang, Wenzhong (1)
-
Wang, Yujian (1)
-
Wu, Guangliang (1)
-
Wu, Hongjie (1)
-
Wu, Lei (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tectonic plate convergence is accommodated across the continental lithosphere via discrete lithospheric subduction or distributed shortening and thickening. These end-member deformation modes control intra-plate mountain building, but their selection mechanism remains unclear. The variable composition of the continental crust and lithospheric mantle, which impacts its density and rheology, can be inferred by the distribution of magnetic-indicated crustal iron. Here we demonstrate that vertically coherent pure-shear shortening dominated the active Tian Shan orogen, central Asia, based on high-resolution aeromagnetic imaging and geophysical-geodetic observations. Integrating these findings with thermomechanical collisional models reveals that the mode of intracontinental deformation depends on contrasts in lower crust composition and mantle lithosphere depletion between the converging continents and central orogenic region. Distributed shortening prevails when the converging continents have a more iron-enriched mafic crust and iron-depleted mantle lithosphere when compared to the intervening orogenic region. Conversely, continental subduction occurs without such lithospheric contrasts. This result explains how the Tian Shan orogen formed via distributed lithospheric thickening without continental subduction or underthrusting. Our interpretations imply that iron distribution in the crust correlates with lithospheric compositional, density, and rheological structure, which impacts the preservation and destruction of Earth’s continents, including long-lived cratons, during intracontinental orogeny.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Wang, Shui-Jiong; Wang, Wenzhong; Zhu, Jian-Ming; Wu, Zhongqing; Liu, Jingao; Han, Guilin; Teng, Fang-Zhen; Huang, Shichun; Wu, Hongjie; Wang, Yujian; et al (, Nature Communications)Abstract Earth’s habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth’s late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.more » « less
An official website of the United States government
